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I INTRODUCTION

The technique being used to make precision measurements of the har-

monic content of Energy Saver dipole and guadrupole magnets is that of
the rotating coil! The objective is to measure deviations from the main
field(either dipole or quadrupole) as small as 1 part in 10°. In prin-
ciple, a single planar coil, whose transverse center does not coincide
with the center of rotation (rotation along an axis in the beam direction)
will suffice. The Fourier components of the induced voltage signal when

. the coil is rotated through one turn are simply related to the harmonic
coefficients of the magnetic field. In practice one has a problem of
dynamic range with the "voltmeter" due to the large size of the component
from the main field. This can be overcome by having two coils as in Fig. 1
(usually referred to as "inner" and "outer" coils) with outputs summed
together such that the main component cancels out; in order to see the
radial dependence, the coils must be Tocated at different effective radii.
In a physical probe with two coils it is not possible to achieve cancel-
lation to 1 part in 10%; for the probes in use, the coils are non-cop]g-
nar by about 1 degree. To accomplish this a third coil is added at S0
to the other two (the "skew" or "side" coil) and the appropriate fraction
of its signal is summed in with that of the other two.

Currently, the harmonic coefficients are calculated from the Fourier
components assuming a probe of idealized geometry. 2°3 It is the pur-
pose of this note to give an exact formula for the actual design geome-
try of the dipole harmonic probe and also to derive a more general ex-
pression that allows for a limited class of geometrical errors in the probe.
The motivation for this study is the experimental fact that the skew coef-
ficient of the 18 pole is non-zero when averaged over many magnets. The
normal 18 pole coefficient is known - and expected - to be large (-13x10"*in %);
the skew is expected to be zero on average.

IT PROBE WITH GEOMETRY ERRORS

Fig. 2 shows a "J" type probe geometry with two plausible types of
geometrical errors: (a) the center of the inner coil is displiaced along
a radius perpendicular to the plane of the coil by a distance A, (b) the
plane of the outer coil does not contain the center of rotation P, but
makes an angie o with respect to a radius through the small-radius leg of
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the coil. (This leg is assumed to be in the plane of the inner coil.) Al-
though the errors are completely defined by A and o, it is useful to de-
fine the other parameters as shown in Fig. 2; some relations among them are:

r?2=r?+W +2rWcosa?* (r3+ w)z—r3Wa2
3
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The geometrical constants of the "J" probes “ are:

r = 0.340" , r, s 0.918" , W =w

0.580" , €=0.335".
3

Our convention here is that positive angle is in the counter-clockwise directions.

ITT MEASUREMENT PROCEDURE WITH ROTATING COIL

The signals from the three coils (0, I, S stand for outer, inner, and
skew) are added together in a resistor network in the "bucking box"; the
sum signal, e goes to a voltage integrator.

ey = kO (eo tkp e tkoe
k k
4 0

With the dipole field at 1 T, one adjusts the signal fractions k, and k_ such
as to minimize the dipole signal at the output of the integrator when the

coil is rotated. The integrator output, E, is zeroed at the start of rota-
tion; at some angle ©, one has :

)

S

E(0) = kg o (o) + kp ¢ (0) + k_ &_ (0) (2)
RC ° > S
-_k_0 cpo (0) + kI @I (0) + kS o (0)
RC Ko Ko

where © i's the magnetic flux through a coil. One then substitutes equiva-
lent resistors (+3600) for the inner and side coils and does a rotation with
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the outer coil alone. ("unbucked” run).

Ep (0) = k B LWm cos (6+a ) - cos a (3)
RC ’ ’

One defines the "standard amplitude ," as

>
i

k B LWm (4)
0 0
RC

where L is the coil length, m the number of turns in the coil, and RC is the
integrator constant. One also chooses the "zero" of the © coordinate such
that «,= 0.

To measure harmonics at same dipole field By, one then switches I and S
coils back in (bucked condition) and makes one coil rotation recording E(0)
at 1024 equally spaced points around the circle. E(O) can then be Fourier
analyzed in the interval 0=0 to 27 to give:

14
E(9) = A cos ( (N+1) © + o) + CONSTANT (5)
N0 n
If the bucking is perfect, the dipole term A, = 0. What remains now is to
calculate the right-hand side of eq. (2) in terms of the harmonic expansion
of the field and the probe geometry.

IV FLUX CALCULATION THROUGH THE PROBE AND THE RELATION TO HARMONIC COEFFICIENTS

We need to calculate the net flux through the probe when summed over
the three coils with the condition that @B(@)=O, if only the dipole field

og (0) = ¢ (0) + kp o (0) + k. ¢_ (0) (6)
Ko ko

is present. In the standard Enérgy Saver coordinate system and notation, the
harmonic expansion of the two-dimensional field in the body of the magnet is
given by

C Z": Z=x+ iy (7)

with
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Using this expression for the field one can integrate over the surfaces of

the coils in the probe and add them up to obtain an expression for @B(Q) of
the form
i} > N1 i(N+T)O .
25 (@) = RC AS Re { = Cn ro e (RN+1 IN) } (8)

—_— N=0

W N+1

where R, and IN are both real functions of r, and depend on the geometry of
the proge; the 'zero of the © coordinate is determined by the dipole field
as mentioned above. Using this expression in eq. (2) we now have a second
equation for E(©) in terms of the b,'s and a,'s. Equating corresponding
terms in cos (N+1)© between this eq”ation ang eq. (5) yields:

o
i

(N+1)W Ay cos (ay - ¢y )

N
N+ i (9)
r S 2 2
0 JﬁN * Iy
ay = (N+1)W AN sin (aN - oy )
N+1 A
r S Jp 2 2
0 Ry™ + Iy
where tan¢N = IN/RN .
Their ratio becomes:
d -
bN = tan (o - oy) (10)
N

For a probe with no geometrical errors we will find IN = 0, hence ¢N = 0.

V. GENERAL EXPRESSIONS FOR RN and IN

Taking the geometry of the probe to be that shown in Fig. 2, integrating
over all three coils (all coils have 20 turns), one arrives at the exact
expression

N+1
) el (Wha i)y "3 ) (11)

(RN + i IN
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The three lines in eq. (11) are the contributions of the outer, inner, and
side coils respectively; the factors_W cos (a+B) and W sin (a+B) arise from

the cancellation condition for the difole field. €

In the region where o, § << Nll eq. (11) gives (letting W=w).

N+1 N+1

Ry=1- (=) - (0N (5 (12)
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With no restrictions on o and § (but neglecting the side coil) eq. (11) yields:
N+1

RN=COS((N+U(0L'Y))'(_:§__) cos { ( N¥1 ) o )

- () W1 cos (avp) :(1+(-1>“ ) cos ( (N+1) &) cos ( (1) (a+8) )
£ (1+-1) M) sin (1) 8) sin ( (1) (ok8) >—

Iy = - sin (1) (a-v) )+ sy ™ sin (1) o) (13)

o
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TNy N 1 s (atB) (1+(-1)N) cos ( (N+#1)8) sin { (N+1) (a+B) )

C (e (=1) ™) i (1) ) cos ( (N1) (ae) )

Hence for large N
tan ¢, = IN / RN = - tan ( (N+1) (o - v) )

or

oy = -(W1) (ay)

Numerical values for the "J" probes for the quantities appearing in

the formulae for RN and IN are:

r; _ 1 : W 1 : W 1.73 > 1

ro 2.70 2ro  3.77 3 2ro  5.48

With this in mind, some observations that can be made from eq. (12) are:
1. For a "perfect" probe, IN =0

2. For N > 4 (decapole), it is a good approximation (1% level) to
keep only the first term in both RN and IN

Ry=1 » Iy=- (N+1) (o - v)

Therefore, the only parameters of the probe that enter are
W, e, o, and y; i.e. the inner and side coils do not enter.
Angle o enters explicitly because it determines the phase of
the dipole term from the outer coil.

3. For N > 4 the dominant effect of the imperfect probe, is an ap-
parent rotation of higher multipoles relative to the dipole by
an angle -(N+1) (a-v); for small oy the biggest effect is seen
in ay (see eq. (9).

4. For N < 4, the parameters of the inner and side coils begin to
play a role; even for the smallest N (N = 2) to which the side
coil contributes, it is negligible.
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For A # 0 (hence & # 0), one can change the sign of (a - y) with-
out changing the sign of (a + B), the angle between the planes of
inner and outer coils. ‘

VI COMPARISON OF FORMULAE USED FOR CALCULATING ay AND by

A.

Probe without geometrical errors.

Until May, 1982, the formulae in use at MTF for the "J" probes
were:

b'y = 2 (1) Ay cos oy (14)
3 roN AS fN
a'N = bN tan Qy
where
N+1 N+1
f, =1-2,1\ + =1
N (-—3-'/ ( T-)

From eq. (9) and eq. (12) we find:

b - (N+1) W AN 1 cos GN (]5)
N N+
Yo AS RN
aN = bN tan ay
where
RN=1-,r3)N”-(1+(-1)N)(w)N”
\Y’o 2Y‘0

Egs. (14) follow from egs. (15) in the approximation ( W = w )

Moo= 2, oy =]
o 3 ro 3
where in actuality W_= 0.632 , rs; = 1

o ro 2.7



Forming the ratio gives

Table I exhibits bN / b‘N vs. N for the J probe and also for the obsolete

A-style probe 2,3,%:

TABLE I
N bN / bN'
J PROBE A PROBE

1 (QUAD) 0.976 0.961
2 0.951 0.942
3 0.954 0.933
4 0.949 0.927
5 0.949 0.924
6 0.948 0.922
7 0.948 0.920
8 0.948 0.919
9 0.948 0.919
10 0.948 0.918

Hence for the "perfect” J probe, b& and aﬁ are too large by ~5% and for
the older A probe 8%.

B. Probe With Geometric Errors

In May, 1982, a probe "flattening" correction was added to eq. (14)
with

cos oy > cos (o + N (a+8))

tan oy > tan ( ay * N{(a+38))
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where (a+8) (see Fig. 2) is the angle between the planes of the inner and outer
coils, which can be measured directly and is ~ 1°. We find from egs. (9) and
(13) that for N > 4 the corrections should be

cos (ay + (M+1) (o - v) ) (17)
tan (o + (1) (a - v) )

i.e., the angle g does not enter in the phase correction. As noted in eq. (1),

a and vy are related by geometry such that (o - yv) = 0.37a. A recent study

by A. Wehmann ° on the phase of the 18 pole amplitude indicates that (a - v) = 1.2°
for the probe labelled "J2."

VIT SUMMARY OF FORMULAE FOR a, AND b, FOR J-TYPE PROBE

Gathering together egs. (9), (10), and (12) we have (geometric parameters
are defined in Section II above)

bN _(IN+T1 )W Ay cos ( ay - by )
2 2z

r°N+1 R, A d] + Iy /Ry
ay = by tan (aN - ¢N)
tan ¢N = IN / RN

For a, § << 1 (18)
N+1
RN =1 - rs N+1 - (T + (-1)N) _w_) N+1
( o ) ( 2"‘0
y= (1) |- Go-v) +a ey M- e (M) T
ro 2r,

Using the known geometry constants of the J probes, we give same numerical
results for RN and IN:



R, = 0.863, R, = 0.886, R; = 0.981, R, = 0.987, Rs = 0.997
L=2 |-(a-y)+ a - 8
_ 7.3 5.0 _
=3 | -(a-y)+ a + (o+8)( 1 _+ 1 )
19.7 16.0 143 |
I, =4 -(a-v)+ « - 5
53.1 50.5
- B
I,=5 | -(a-v)+_a + (a+B)( ] -1 )
143.5 160 7130

Remembering that (o - y) = 0.368x, we see that the approximation

Iya - sin (M) (@ -v) )

should be fairly good for N > 4 (decapole).

VIII EFFECT OF o # O ON DETERMINING THE COORDINATE FRAME WHERE THE
16-POLE IS ZERO

The harmonic coefficients given by eq. (18) are in an (x,y) co-
ordinate system whose origin is at the center of rotation of the coil.
For the dipoles the coefficients are transformed to the system where the
16-pole is zero, (a; = bs= 0). Using this prescription, one finds from
the data that the center of rotation of the coil usually Ties within the
regions:

X 0 = 50 mils

y = -65 = 50 mils
Clearly if the probe has the type of geometric error o # 0, then this pro-

dedure is in error if eq. (14) is used in calculating ay and by

One can obtain some idea of possible errors involved by the following
procedure: (1) assume that the dipole has only one non-zero higher har-
monic, bg = -13x10 ~* (in)"® din the central reference frame, (2) trans-
form this into a frame displaced by (x, y), (b, and a; will be generated),
(3) rotate the multipoles cs and cg by an angie (N+1) (a-v), and (4) cal-
culate a translation which will make a; = b; = 0. In general one does not
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return to the original coordinate frame; in first order the errors are

Ay = x sin (o - ¥); Ax = y sin (a - ¥) (19)

Hence if the probe has a y displacement of 120 mils and (a - v) = 20,
then the ~ shift will be in error by 4.2 mils. This does not appear to
be a big effect (e.qg., it will feed 0.8% of the sextapole into the quad-
rupole); on other hand, a real dipole has many more non-zero harmonics
and it may be that the error is sometimes significant.

IX CONCLUSIONS

We have derived expressions for calculating the harmonic coefficients
of the magnetic field applicable to a rotating coil probe of the "J" type
geometry. The "perfect" probe can be described by three geometric con-
stants (only inner and outer coils needed); we have considered a more
general case that allows for a limited choice of geometric errors describ-
able by two additional angle parameters (8 and o in Fig. 2). The big-
gest effect arrises from o # 0; this occurs when the plane of the outer
coil does not contain the center of rotation. If ignored, this error ro-
tates the higher multipole amplitudes, c,, relative to the dipole by an
angle ~ 0.4 o (N+1). Such a rotation w1¥1 generate skew coefficients,
a_, if the normal coefficient, b,, is non-zero. For the probe .labelled
J?, the value of ag averaged oveu many magnets indicated a value of a of
~ 37, assuming it is due to this type of geometric error.

Other conclusions arrived at during the course of this study are:

(a) The formulae in use at MTF for calculating b, and a, assume an
idealized probe geometry which differs appreciably from the Hesign geo-
metry. The effect of using this approximation is that calculated coef-
ficients are 5-8% too large (see Table I).

(b) In May, 1982, Dan Gross introduced a phase correction into the
calculation of b, and a, (called "probe flattening”) in an attemot to
make < ag > = 0; he.app?ied a phase correction of N(a+g), where (a+3) is
the angle between the planes of inner and outer coils. As shown above the
proper correction is (N+1) (a - v) (which equals 0.37(N+1)a for our geo-
metry). In our model it is even possible for (o - y) and (a + R) to have
opposite signs. For the higher multipoles (N > 4), because of the strong
r dependence, the inner coil is not relevant.

(c) The harmonic coefficients for a dipole are given in a coordinate
frame that gives zero sixteen pole. In practice it is necessary to shift
the coordinate system by as much as 0.15 in. to accomplish this. If a # 0,
this shifting will be in error; although the effect appears not to be large,
a definitive study should be done with actual magnet data.
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